

Ökobilanzwerkstatt 2011

Kraftstoffgewinnung aus Biomasse Systemanalytische Untersuchung thermochemischer Verfahren

Martin Henßler

Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart

21.09.2011

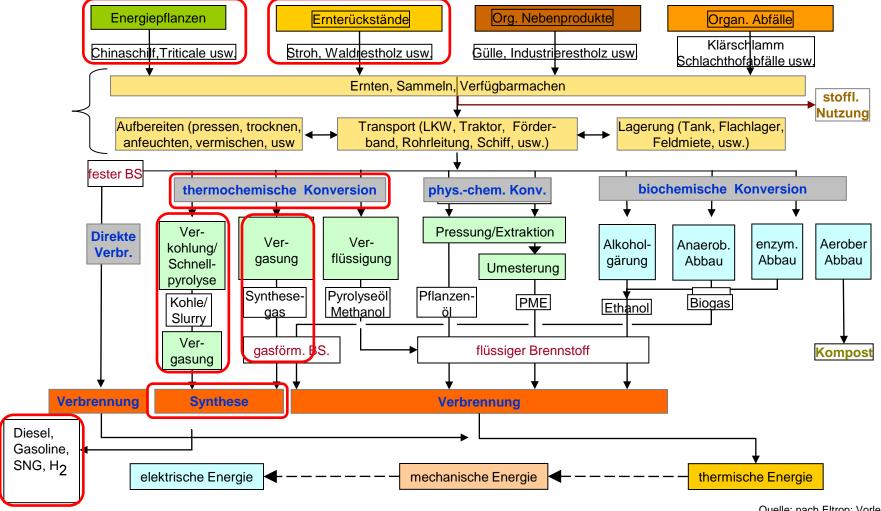
Hintergrund

Thermochemische Verfahren (Schnellpyrolyse, Verkohlung und Vergasung) zur Kraftstoffgewinnung aus Biomasse befinden sich noch in der Pilotphase

- → wenige Anlagen, die über mehrere Jahre betrieben wurden (z.B.: Demo Anlage Güssing, CHOREN Alpha Anlage)
- → geringe Datengrundlage
- → Unsicherheiten u.a. bei der Ausbeute und Zusammensetzung der Produkte (Slurry, Kohle, Syngas) der jährlichen Betriebsstunden, Kosten, etc.

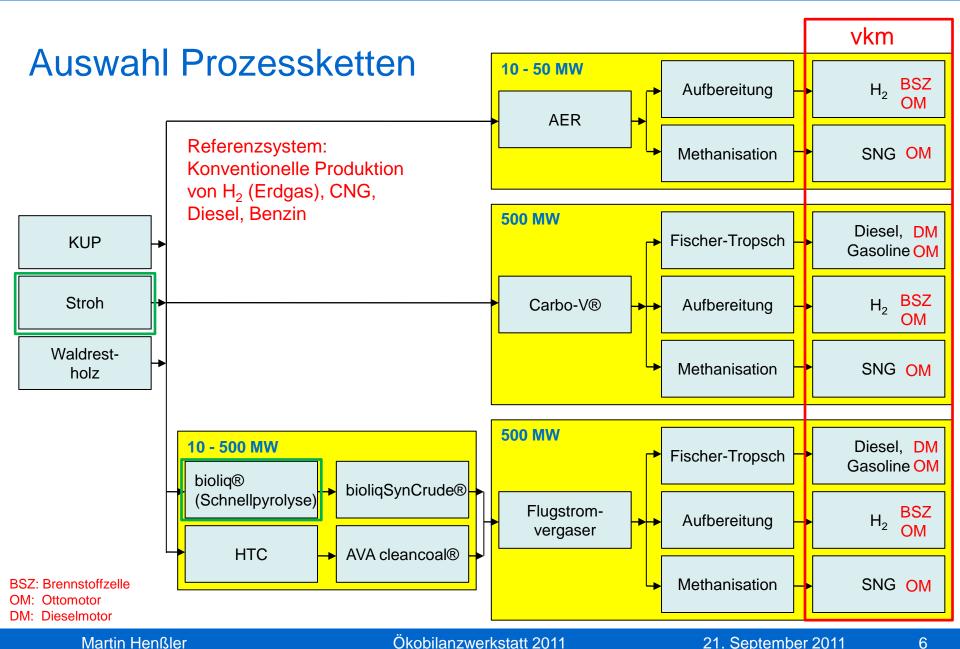
Zielsetzung

- Analyse und Identifizierung der energetischen Biomassenutzung in innovativen thermo-chemischen Anlagen im Hinblick auf deren technischen, ökonomischen und ökologischen Eigenschaften anhand einer LCA/LCC.
- Unsicherheiten: Ermittlung der Parameter, welche Auswirkungen auf die THG-Emissionen bzw. Kosten haben, anhand einer Sensitivitätsanalyse (→ Monte-Carlo-Simulation)
- Darstellung der Entwicklungsmöglichkeiten der untersuchten Techniken im Energiesystem Deutschland bis zum Jahr 2030 (TIMES) und der damit verbundenen
 - i. Beiträge zur Minderung der Treibhausgasemissionen,
 - ii. der Substitution fossiler Energieträger und
 - iii. der gesamtwirtschaftlichen Kosten anhand einer Szenariobetrachtung


Vorgehensweise / Methode

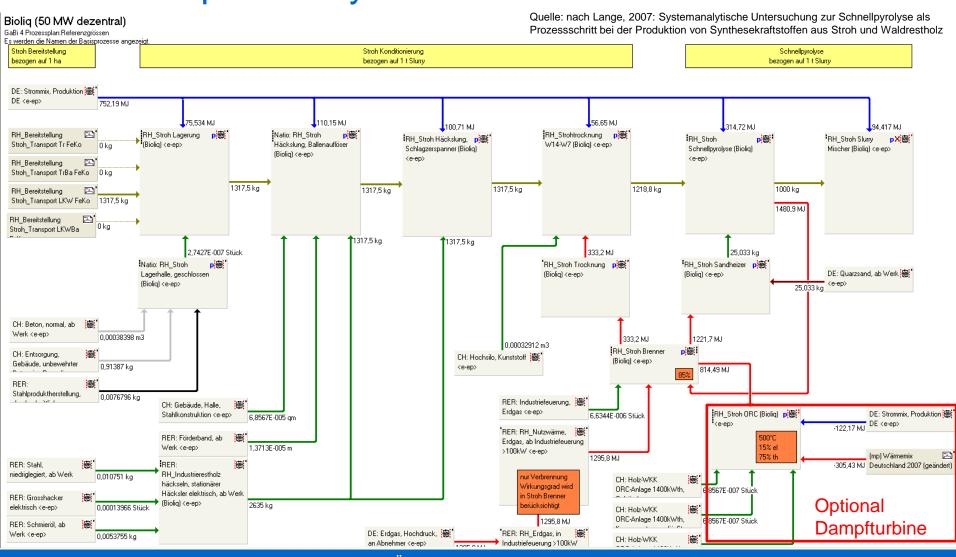
Auswahl Biomasse und Konversionsverfahren: Definition der Prozessketten LCA/LCC Festlegung des Bilanzierungsrahmens / Systemgrenzen Sachbilanz Wirkungsabschätzung Analyse und Bewertung der Prozessketten. Vergleich mit einem Referenzsystem (technisch, ökonomisch, ökologisch). Sensitivitätsanalyse / Monte-Carlo-Simulation Systemische Bewertung der Nutzungspfade im Energiesystem Deutschland (TIMES) Vergleich und Zusammenführung der Ergebnisse

Energiegewinnung aus Biomasse


Quelle: nach Eltrop: Vorlesung EE II

5

Ökobilanzwerkstatt 2011 Martin Henßler 21. September 2011



LCA: bioliq® - Slurry Produktion

8

Universität Stuttgart

Sensitivitätsanalyse / Monte-Carlo-Simulation

Sensitivitätsanalyse

Betrachtung eines Punktwertes (Literatur) in einem vorgegebenen Spektrum

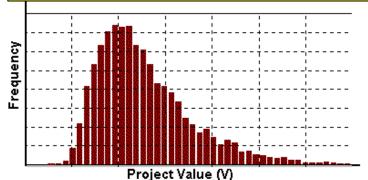
Bereits untersucht (THG-Emissionen, Schnellpyrolyse)

- Stroh-Aufkommensdichte
- nur geringe Wahl des Transportmediums Auswirkungen
- Abwärme Nutzung (ORC)
- Bedarf an elektrischer Energie
- Ausbeute Slurry

Weitere

- Ausbeute Pyrolysegas
- Bereitstellungskosten Biomasse
- Transportkosten
- Anlagenkosten
- Personalkosten
- Verbrauch Erdgas (Schnellpyrolyse von Stroh) **Umstellung auf Biogas?**
- Ausbeute: Kohle, Syngas, H₂, SNG, Diesel, Benzin
- etc.

Ermittlung der Parameter, welche Auswirkungen auf die THG-Emissionen bzw. Kosten haben



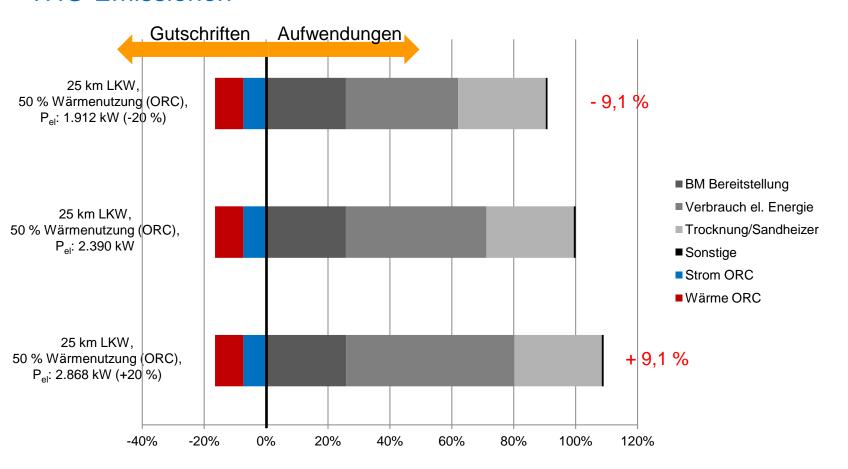
Monte-Carlo-Simulation

Technik zur Simulation der "Realität" mittels variabler Verteilungen anstatt von Punktwerten (Sensitivitätsanalyse)

- → Ermittlung der Verteilung
- → Programm (z.B. Crystall Ball) generiert

Szenarien unter Zuhilfenahme von Zufallszahlen

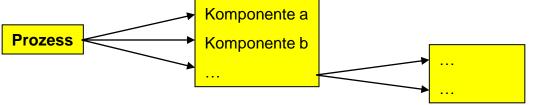
Quelle: http://www.puc-rio.br/marco.ind/imagens/mc-large-b.gif



9

Universität Stuttgart

Sensitivitätsanalyse – el. Leistungsbedarf Schnellpyrolyse THG-Emissionen



Systemische Bewertung - TIMES

- Zusammenführung der Ergebnisse
 - i. LCA
 - ii. LCC
 - iii. Sensitivitätsanalyse
 - → Auswahl der bevorzugten Ketten
- Lernkurven: Ermittlung der Lernpotenziale (2030)
 - Aufsplittung der Prozesse, um mögliche Lernpotenziale hinsichtlich
 - 1. Kosten
 - 2. Effizienzsteigerung

zu ermitteln

ii. Alternativ (bei schlechter Datengrundlage)

Definition der Kosten und Effizienzsteigerungen der betrachteten Ketten, um gesetzte Ziele hinsichtlich der THG-Minderung zu erreichen.

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt

Martin Henßler

Institut für Energiewirtschaft und Rationelle Energieanwendung (IER)
Abteilung Systemanalyse und Erneuerbare Energien (SEE)

Universität Stuttgart ■ Hessbrühlstr. 49a ■ 70565 Stuttgart
Tel.: +49 (0)711 685 87868 ■ Fax: +49 (0)711 685 87873

E-Mail: martin.henssler@ier.uni-stuttgart.de