
Operational LCA guidance for hydrogen production

21st September 2011 Aachen Germany

Operational LCA guidance for hydrogen production: Methodological approach and first results

Dipl.-Ing. Aleksandar Lozanovski (University of Stuttgart)

21.09.2011

Ökobilanz Werkstatt, Aachen

- About FC-HyGuide
- Overview of hydrogen production types
- LCA case study on hydrogen production via steam-reforming

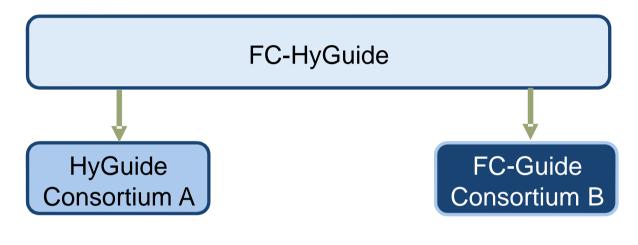
ISO

- ISO 14040 describes the principles and framework for Life Cycle Assessment (LCA)
- ISO 14044 specifies requirements and provides guidelines for LCA

International Reference Life Cycle Data System (ILCD) – ILCD Handbook

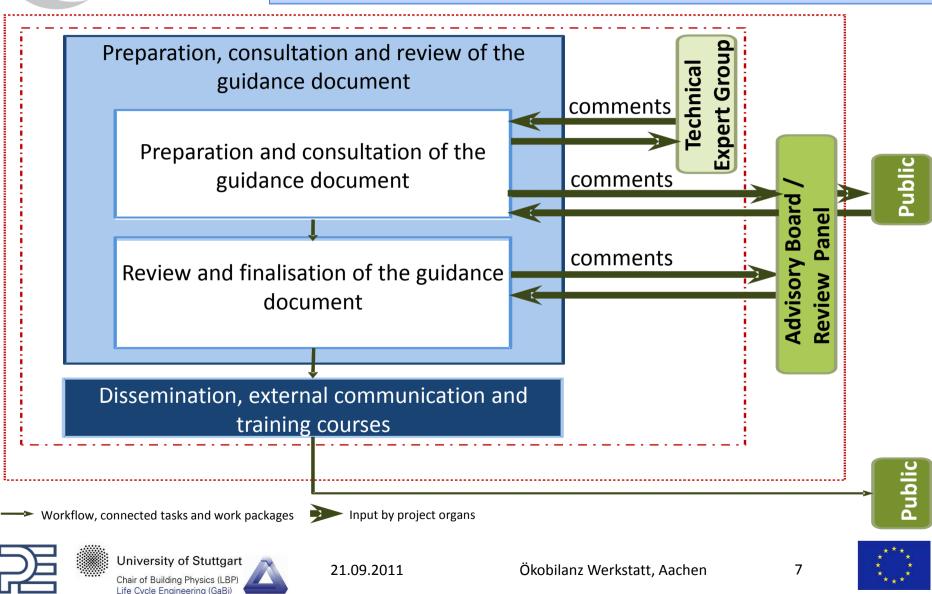
- General guide for LCA which provides detailed guidance on how to conduct a LCA to quantify the emissions, resources consumed and influences on the environment and human health that can be attributed to a product.
- In line with the ISO standards, further specifying and complementing them.
- It has been co-developed by the JRC-IES, Platform on LCA

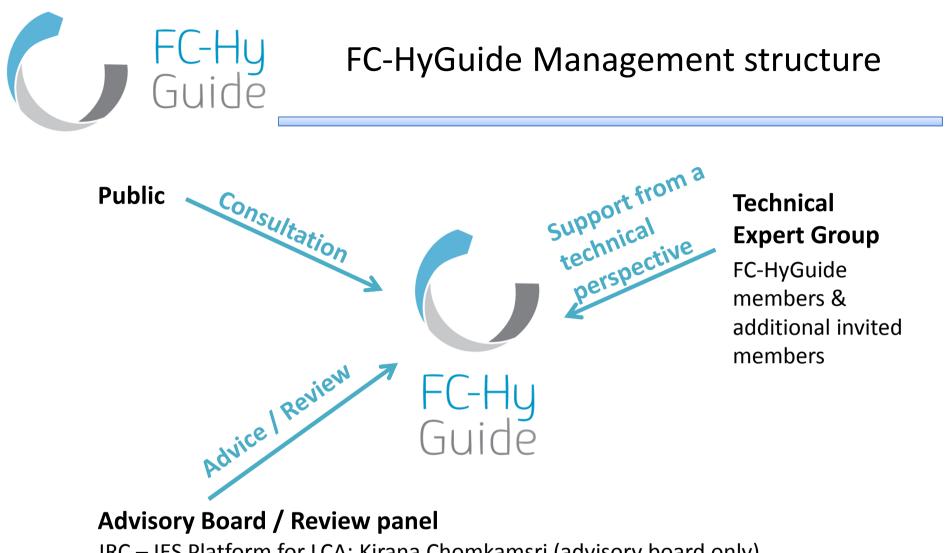
Expected results:


- A guidance document based on the ILCD handbook that is scientifically sound, industry accepted and quality assured (reviewed)
- LCA study reporting template, tailor-made to hydrogen and fuel cell technologies
- Broad dissemination among LCA practitioners and industry,
- A project website (<u>http://www.fc-hyguide.eu/</u>), as a central information point and as fully integrated component of the ILCD data network, with public and restricted access areas.

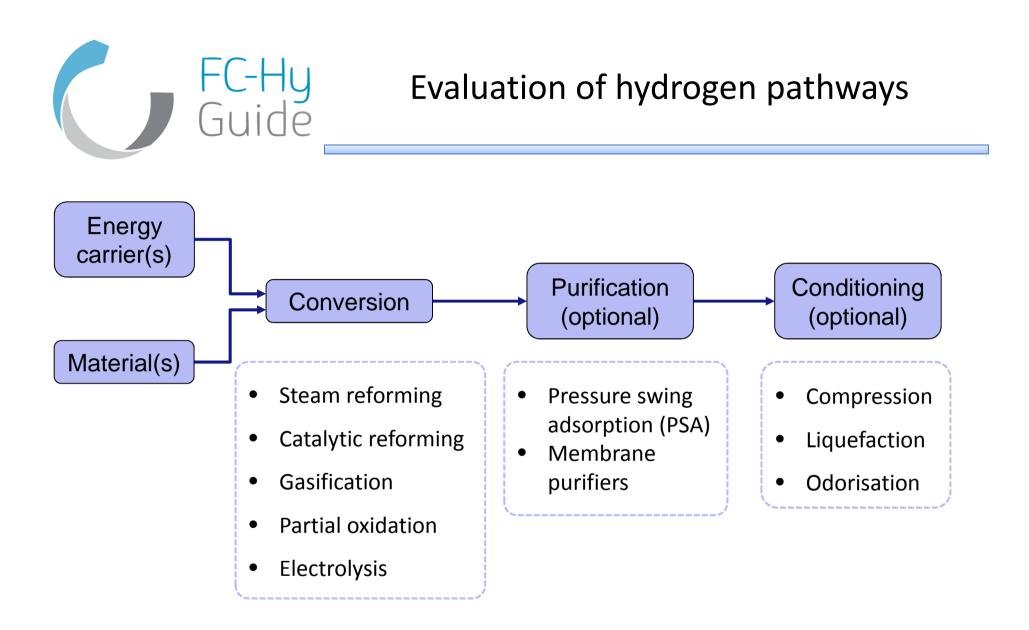
"Hydrogen production systems" "Fuel Cell technologies"

• FC-HyGuide = HyGuide + FC-Guide





FC-HyGuide Project structure


JRC – IES Platform for LCA: Kirana Chomkamsri (advisory board only) TU Berlin: Prof. Dr. Matthias Finkbeiner GIGA: Dr. Pere Fullana MiBo Consult: Michael Bode

University of Stuttgart Chair of Building Physics (LBP) Life Cycle Engineering (GaBi)

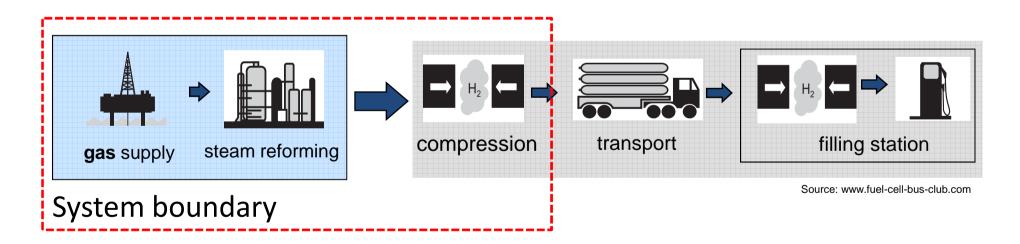
21.09.2011

Conducting the case studies

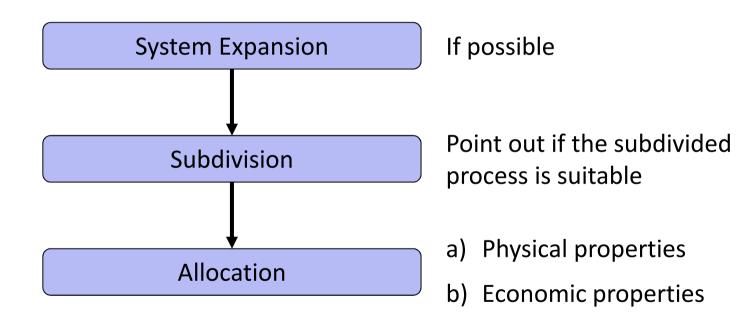
General LCA phases:

- 1. Goal of the LCA study
- 2. Scope of the LCA study
- 3. Life Cycle Inventory Analysis
- 4. Life Cycle Impact Assessment
- 5. Interpretation and quality control
- 6. Critical Review

- Intended application: *Evaluation of the production of hydrogen*
- Method, assumptions and impact limitations: "full"-LCA
- Reasons for carrying out the study: *e.g. Case study*
- Target audience: *technical and non-technical audience*
- Comparisons intended to be disclosed to the public: *are possible*
- Commissioner of the study: *e.g. Project consortium FC-HyGuide*



- Function, functional unit and reference flow: 1MJ H₂ @ XX bar, YY °C, ZZ,ZZ% purity
- LCI modelling: *Attributional, according to situation A in the ILCD handbook*



• Multi-functionality: *Following the ILCD Handbook and ISO a hierarchy is demanded:*

- System boundaries:
 - Geographical boundaries: *EU-27*
 - Reference year: 2011
 - Limitation within the life cycle (LC): none
- Definition of relevant (energy & material) flows
 e.g. input of energy carriers, electricity
- Cut-off criteria: *5%-rule, based on environmental relevance*

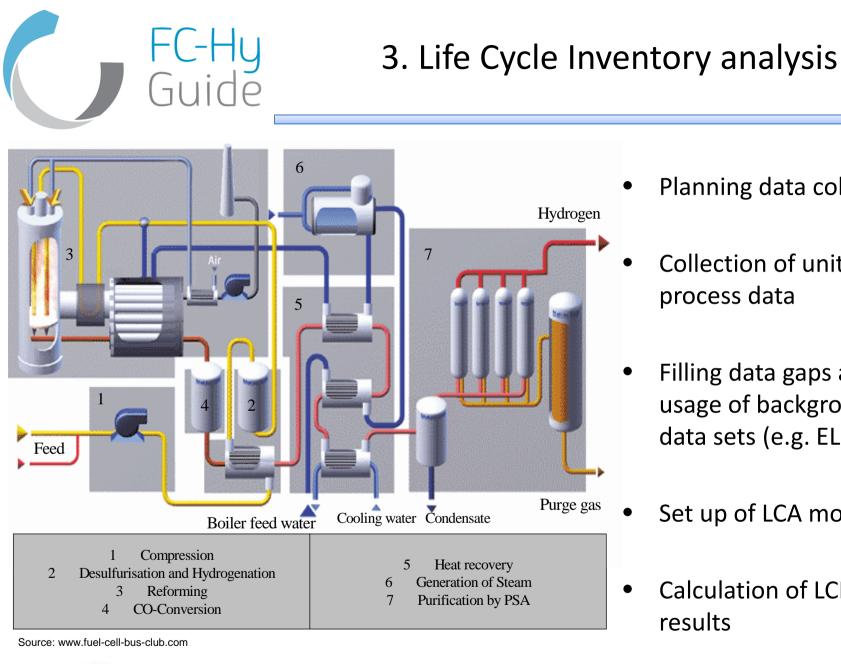
- LCIA method chosen: *CML impact method*
- LCIA categories selected: *midpoint; GWP*₁₀₀, AP, EP, POCP
- Further indicators evaluated: *PED*_{fossil}, *PED*_{renewable}
- Type, quality and sources of required data and information:
 - Specific primary data on main processes, e.g. how much natural gas, electricity is consumed by steam-reforming
 - Generic (average) data on background data, e.g. LCI of natural gas extraction (to be taken from ELCD database)

- Data quality requirements (Technical, time-related, geographical representativeness, completeness, precision / uncertainty, methodological appropriateness and consistency): *E.g. Measured natural gas consumption of an average size steam-reforming process over a period of on year in regular operation*
- Comparisons between systems: can be conducted with this guide
- Intended reporting: *Third party use*

- Identification of critical review needs:
 - Non-comparative studies to be disclosed to the public

 \rightarrow Independent external reviewer

Comparative assertions disclosed to the public


 \rightarrow Independent external review panel

• Intended reporting: *e.g. internal report; third party report*

- Planning data collection
- Collection of unit process data
- Filling data gaps and usage of background data sets (e.g. ELCD)
- Set up of LCA model(s)

Calculation of LCI results

University of Stuttgart Chair of Building Physics (LBP) Life Cycle Engineering (GaBi)

3. Data collection questionnaire – general part –

Part I: General information on hydrogen							
production							
		unit					
Please attach an additional sheet including a system functioning scheme and system's basic components							
Hydrogen related information							
[please add rows and other fields if needed]	r						
Purity of the hydrogen (XX %)		%					
Aggregate state (liquid or gaseous) of the hydrogen							
Pressure of the hydrogen (YY bar)		bar					
Temperature of the hydrogen (ZZ °C)		C					
Impurities (please state them below, if known)		%					
Type of Impurities							
Amount		%					
Quantity produced by volume		Nm ³ /h or Nm ³ /year					
Quantity produced by mass		kg/h or kg/year					
Description of hydrogen producer (general information on the producer)							
[please add rows and other fields if needed]							
Overall hydrogen production capacity (of the production company)		m³					
Number of hydrogen production sites		No.					
Hydrogen production technologies used (e.g. steam reformer, electrolysis etc.)							
Geographical coverage by region (where are the major production locations of the producer)		country or region					
Description of the product system under investigation							
[please add rows and other fields if needed]		-					
Hydrogen production technology used							
Location of the production site		country or region					
Year of construction							
Is there electricity produced on-site used		yes/no					
Amount of electricity produced on-site used (if applicable)		kWh/MJ hydrogen					
Type of electricity production on-site (if applicable)							
Is there heat produced on-site used in the production of H ₂							
Type of heat production on-site, e.g. gas boiler, oil CHP etc. (if applicable)		1					
Amount of heat production on-site (if applicable)		MJ/MJ hydrogen					
H ₂ production capacity per day		Nm ³ /year or MJ/year					
H ₂ production capacity per year		Nm ³ /year or MJ/year					
Technical service life of H ₂ production							
Scale of production site (laboratory, pre-commercial, commercial scale)							
Type of storage (including e.g. liquefaction facility or other device)							
Capacity of storage		Nm³					

3. Data collection questionnaire - specific part -

Part II: Hydrogen production by stea	m reforming	amount (per unit of				
		product)	unit			
Hydrogen production - Functional unit is "1 MJ of hydro	ogen (net calorific va	lue (NCV) with XX 🤅	% purity and YY ba			
[please add rows and other fields if needed]						
Input						
Natural gas (if applicable)			Nm ³ /MJ hydrogen			
Net calorific value of the natural gas used			MJ/Nm ³			
Liquefied petroleum gas (if applicable)			kg/MJ hydrogen			
Net calorific value of the liquefied petroleum gas used (if applicable)			kg/Nm³			
Refinery gas (if applicable)			Nm³/MJ hydrogen			
Net calorific value of the refinery gas used (if applicable)			MJ/Nm ³			
Other process gases (e.g. off gas from H_2 purification) (please specify if	applicable)		m³/M.I hvdrogen			
Net calorific value of the process gas used (if applicable)		_				
Composition of the process gas (e.g.% H2, % CO2 etc.) (if applicable)	Part III: Hydr	ogen produc	ction by elec	ctrolysis	amount (per unit of	
Cooling water	-	• .	-	•	product)	unit
Temperature of the cooling water	Hydrogen production - Functional unit is "1 MJ of hydrogen (net calorific value (NCV) with XX % purity and YY be					
Tap water	Method of production: Alkaline electrolysis					
Average temperature of the tap water	[please add rows and other fields if needed]					
Electricity	 Input	-				
Operating supplies and spare parts (e.g. kg catalyst for reformer)	Electricity					kWh/MJ hydrogen
Operating supplies for the desulphurisation (e.g. kg catalyst per year)	Tap water				m³/MJ hydrogen	
Operating supplies for the de-ioniser (if applicable)	Potassium hydroxide					kg/MJ hydrogen
Output	Process gases (e.g. off g	as from H ₂ purification) (please specify if applic	able)		m³/MJ hydrogen
CO ₂ (Emissions)	Net calorific value of the process gas used (if applicable)				MJ/m ³	
NO _x (Emissions)	Composition of the process gas (e.g.% H_2 , % O_2 etc.) (if applicable)					
CO (Emissions)	Operating supplies and s	pare parts				
Other emissions (please specify)	Output					
Waste water	Is the Oxygen used? (Ple	ease state the amount be	elow if yes)			yes/no
Miscellaneous waste	Oxygen					Nm³/MJ hydrogen
Amount of H ₂ losses during purification	Amount of H ₂ losses duri	ing purification				%
Are the H_2 losses used as process gas? (if yes please specify in proces	Are the H ₂ losses used	as process gas? (if yes	please specify in proce	ess gas column above in	nputs)	yes/no
	Other emissions (pleas			-		kg/MJ hydrogen

University of Stuttgart Chair of Building Physics (LBP) Life Cycle Engineering (GaBi)

Contact details

Dipl.-Ing. Aleksandar Lozanovski

Universität Stuttgart Hauptstrasse 113 70771 Leinfelden-Echterdingen Deutschland

 Tel.
 +49(0)711-489999-32

 Fax
 +49(0)711-489999-11

 E-Mail
 Aleksandar.Lozanovski@lbp.uni-stuttgart.de

 http://www.lbp-gabi.de

